Papers
Topics
Authors
Recent
2000 character limit reached

Solar Image Deconvolution by Generative Adversarial Network

Published 12 Jan 2020 in astro-ph.SR and eess.IV | (2001.03850v1)

Abstract: With Aperture synthesis (AS) technique, a number of small antennas can assemble to form a large telescope which spatial resolution is determined by the distance of two farthest antennas instead of the diameter of a single-dish antenna. Different from direct imaging system, an AS telescope captures the Fourier coefficients of a spatial object, and then implement inverse Fourier transform to reconstruct the spatial image. Due to the limited number of antennas, the Fourier coefficients are extremely sparse in practice, resulting in a very blurry image. To remove/reduce blur, "CLEAN" deconvolution was widely used in the literature. However, it was initially designed for point source. For extended source, like the sun, its efficiency is unsatisfied. In this study, a deep neural network, referring to Generative Adversarial Network (GAN), is proposed for solar image deconvolution. The experimental results demonstrate that the proposed model is markedly better than traditional CLEAN on solar images.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.