Papers
Topics
Authors
Recent
Search
2000 character limit reached

On the distribution of orders of Frobenius action on $\ell$-torsion of abelian surfaces

Published 10 Jan 2020 in math.NT and cs.CR | (2001.03546v1)

Abstract: The computation of the order of Frobenius action on the $\ell$-torsion is a part of Schoof-Elkies-Atkin algorithm for point counting on an elliptic curve $E$ over a finite field $\mathbb{F}_q$. The idea of Schoof's algorithm is to compute the trace of Frobenius $t$ modulo primes $\ell$ and restore it by the Chinese remainder theorem. Atkin's improvement consists of computing the order $r$ of the Frobenius action on $E[\ell]$ and of restricting the number $t \pmod{\ell}$ to enumerate by using the formula $t2 \equiv q (\zeta + \zeta{-1})2 \pmod{\ell}$. Here $\zeta$ is a primitive $r$-th root of unity. In this paper, we generalize Atkin's formula to the general case of abelian variety of dimension $g$. Classically, finding of the order $r$ involves expensive computation of modular polynomials. We study the distribution of the Frobenius orders in case of abelian surfaces and $q \equiv 1 \pmod{\ell}$ in order to replace these expensive computations by probabilistic algorithms.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.