Papers
Topics
Authors
Recent
Search
2000 character limit reached

Inductive Document Network Embedding with Topic-Word Attention

Published 10 Jan 2020 in cs.LG, cs.CL, cs.IR, and stat.ML | (2001.03369v1)

Abstract: Document network embedding aims at learning representations for a structured text corpus i.e. when documents are linked to each other. Recent algorithms extend network embedding approaches by incorporating the text content associated with the nodes in their formulations. In most cases, it is hard to interpret the learned representations. Moreover, little importance is given to the generalization to new documents that are not observed within the network. In this paper, we propose an interpretable and inductive document network embedding method. We introduce a novel mechanism, the Topic-Word Attention (TWA), that generates document representations based on the interplay between word and topic representations. We train these word and topic vectors through our general model, Inductive Document Network Embedding (IDNE), by leveraging the connections in the document network. Quantitative evaluations show that our approach achieves state-of-the-art performance on various networks and we qualitatively show that our model produces meaningful and interpretable representations of the words, topics and documents.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.