Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

A note on the minimization of a Tikhonov functional with $\ell^1$-penalty (2001.02991v2)

Published 9 Jan 2020 in math.NA and cs.NA

Abstract: In this paper, we consider the minimization of a Tikhonov functional with an $\ell_1$ penalty for solving linear inverse problems with sparsity constraints. One of the many approaches used to solve this problem uses the Nemskii operator to transform the Tikhonov functional into one with an $\ell_2$ penalty term but a nonlinear operator. The transformed problem can then be analyzed and minimized using standard methods. However, by the nature of this transform, the resulting functional is only once continuously differentiable, which prohibits the use of second order methods. Hence, in this paper, we propose a different transformation, which leads to a twice differentiable functional that can now be minimized using efficient second order methods like Newton's method. We provide a convergence analysis of our proposed scheme, as well as a number of numerical results showing the usefulness of our proposed approach.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.