Quantum Ostrogradsky theorem
Abstract: The Ostrogradsky theorem states that any classical Lagrangian that contains time derivatives higher than the first order and is nondegenerate with respect to the highest-order derivatives leads to an unbounded Hamiltonian which linearly depends on the canonical momenta. Recently, the original theorem has been generalized to nondegeneracy with respect to non-highest-order derivatives. These theorems have been playing a central role in construction of sensible higher-derivative theories. We explore quantization of such nondegenerate theories, and prove that Hamiltonian is still unbounded at the level of quantum field theory.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.