Papers
Topics
Authors
Recent
2000 character limit reached

Training Progressively Binarizing Deep Networks Using FPGAs

Published 8 Jan 2020 in cs.CV, cs.LG, and eess.IV | (2001.02390v1)

Abstract: While hardware implementations of inference routines for Binarized Neural Networks (BNNs) are plentiful, current realizations of efficient BNN hardware training accelerators, suitable for Internet of Things (IoT) edge devices, leave much to be desired. Conventional BNN hardware training accelerators perform forward and backward propagations with parameters adopting binary representations, and optimization using parameters adopting floating or fixed-point real-valued representations--requiring two distinct sets of network parameters. In this paper, we propose a hardware-friendly training method that, contrary to conventional methods, progressively binarizes a singular set of fixed-point network parameters, yielding notable reductions in power and resource utilizations. We use the Intel FPGA SDK for OpenCL development environment to train our progressively binarizing DNNs on an OpenVINO FPGA. We benchmark our training approach on both GPUs and FPGAs using CIFAR-10 and compare it to conventional BNNs.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.