Papers
Topics
Authors
Recent
Search
2000 character limit reached

DAF-NET: a saliency based weakly supervised method of dual attention fusion for fine-grained image classification

Published 4 Jan 2020 in cs.CV | (2001.02219v1)

Abstract: Fine-grained image classification is a challenging problem, since the difficulty of finding discriminative features. To handle this circumstance, basically, there are two ways to go. One is use attention based method to focus on informative areas, while the other one aims to find high order between features. Further, for attention based method there are two directions, activation based and detection based, which are proved effective by scholars. However ,rare work focus on fusing two types of attention with high order feature. In this paper, we propose a novel DAF method which fuse two types of attention and use them to as PAF(part attention filter) in deep bilinear transformation module to mine the relationship between separate parts of an object. Briefly, our network constructed by a student net who attempt to output two attention maps and a teacher net uses these two maps as empirical information to refine the result. The experiment result shows that only student net could get 87.6% accuracy in CUB dataset while cooperating with teacher net could achieve 89.1% accuracy.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.