Papers
Topics
Authors
Recent
2000 character limit reached

On the precise asymptotics of Type-IIb solutions to mean curvature flow (2001.02123v1)

Published 5 Jan 2020 in math.DG and math.AP

Abstract: In this paper, we study the precise asymptotics of noncompact Type-IIb solutions to the mean curvature flow. Precisely, for each real number $\gamma>0$, we construct mean curvature flow solutions, in the rotationally symmetric class, with the following precise asymptotics as $t\nearrow\infty$: (1) The highest curvature concentrates at the tip of the hypersurface (an umbilical point) and blows up at the Type-IIb rate $(2t+1){(\gamma-1)/2}$. (2) In a neighbourhood of the tip, the Type-IIb blow-up of the solution converges to a translating soliton known as the bowl soliton. (3) Near spatial infinity, the hypersurface has a precise growth rate depending on $\gamma$.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.