On the precise asymptotics of Type-IIb solutions to mean curvature flow (2001.02123v1)
Abstract: In this paper, we study the precise asymptotics of noncompact Type-IIb solutions to the mean curvature flow. Precisely, for each real number $\gamma>0$, we construct mean curvature flow solutions, in the rotationally symmetric class, with the following precise asymptotics as $t\nearrow\infty$: (1) The highest curvature concentrates at the tip of the hypersurface (an umbilical point) and blows up at the Type-IIb rate $(2t+1){(\gamma-1)/2}$. (2) In a neighbourhood of the tip, the Type-IIb blow-up of the solution converges to a translating soliton known as the bowl soliton. (3) Near spatial infinity, the hypersurface has a precise growth rate depending on $\gamma$.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.