Papers
Topics
Authors
Recent
2000 character limit reached

Multi-block ADMM Heuristics for Mixed-Binary Optimization on Classical and Quantum Computers (2001.02069v2)

Published 7 Jan 2020 in quant-ph and math.OC

Abstract: Solving combinatorial optimization problems on current noisy quantum devices is currently being advocated for (and restricted to) binary polynomial optimization with equality constraints via quantum heuristic approaches. This is achieved using, e.g., the variational quantum eigensolver (VQE) and the quantum approximate optimization algorithm (QAOA). We present a decomposition-based approach to extend the applicability of current approaches to "quadratic plus convex" mixed binary optimization (MBO) problems, so as to solve a broad class of real-world optimization problems. In the MBO framework, we show that the alternating direction method of multipliers (ADMM) can split the MBO into a binary unconstrained problem (that can be solved with quantum algorithms), and continuous constrained convex subproblems (that can be solved cheaply with classical optimization solvers). The validity of the approach is then showcased by numerical results obtained on several optimization problems via simulations with VQE and QAOA on the quantum circuits implemented in Qiskit, an open-source quantum computing software development framework.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.