Papers
Topics
Authors
Recent
2000 character limit reached

Hardness results for three kinds of colored connections of graphs

Published 7 Jan 2020 in math.CO and cs.CC | (2001.01948v2)

Abstract: The concept of rainbow connection number of a graph was introduced by Chartrand et al. in 2008. Inspired by this concept, other concepts on colored version of connectivity in graphs were introduced, such as the monochromatic connection number by Caro and Yuster in 2011, the proper connection number by Borozan et al. in 2012, and the conflict-free connection number by Czap et al. in 2018, as well as some other variants of connection numbers later on. Chakraborty et al. proved that to compute the rainbow connection number of a graph is NP-hard. For a long time, it has been tried to fix the computational complexity for the monochromatic connection number, the proper connection number and the conflict-free connection number of a graph. However, it has not been solved yet. Only the complexity results for the strong version, i.e., the strong proper connection number and the strong conflict-free connection number, of these connection numbers were determined to be NP-hard. In this paper, we prove that to compute each of the monochromatic connection number, the proper connection number and the conflict free connection number for a graph is NP-hard. This solves a long standing problem in this field, asked in many talks of workshops and papers.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.