Papers
Topics
Authors
Recent
2000 character limit reached

On the Uniqueness of Binary Quantizers for Maximizing Mutual Information

Published 7 Jan 2020 in eess.SP, cs.IR, cs.IT, and math.IT | (2001.01836v1)

Abstract: We consider a channel with a binary input X being corrupted by a continuous-valued noise that results in a continuous-valued output Y. An optimal binary quantizer is used to quantize the continuous-valued output Y to the final binary output Z to maximize the mutual information I(X; Z). We show that when the ratio of the channel conditional density r(y) = P(Y=y|X=0)/ P(Y =y|X=1) is a strictly increasing/decreasing function of y, then a quantizer having a single threshold can maximize mutual information. Furthermore, we show that an optimal quantizer (possibly with multiple thresholds) is the one with the thresholding vector whose elements are all the solutions of r(y) = r* for some constant r* > 0. Interestingly, the optimal constant r* is unique. This uniqueness property allows for fast algorithmic implementation such as a bisection algorithm to find the optimal quantizer. Our results also confirm some previous results using alternative elementary proofs. We show some numerical examples of applying our results to channels with additive Gaussian noises.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.