Papers
Topics
Authors
Recent
2000 character limit reached

Visual Semantic SLAM with Landmarks for Large-Scale Outdoor Environment

Published 4 Jan 2020 in cs.RO and cs.CV | (2001.01028v1)

Abstract: Semantic SLAM is an important field in autonomous driving and intelligent agents, which can enable robots to achieve high-level navigation tasks, obtain simple cognition or reasoning ability and achieve language-based human-robot-interaction. In this paper, we built a system to creat a semantic 3D map by combining 3D point cloud from ORB SLAM with semantic segmentation information from Convolutional Neural Network model PSPNet-101 for large-scale environments. Besides, a new dataset for KITTI sequences has been built, which contains the GPS information and labels of landmarks from Google Map in related streets of the sequences. Moreover, we find a way to associate the real-world landmark with point cloud map and built a topological map based on semantic map.

Citations (22)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.