Papers
Topics
Authors
Recent
Search
2000 character limit reached

Stability Analysis of Continuous-Time Linear Time-Invariant Systems

Published 3 Jan 2020 in eess.SY and cs.SY | (2001.00709v1)

Abstract: This paper focuses on the mathematical approaches to the analysis of stability that is a crucial step in the design of dynamical systems. Three methods are presented, namely, absolutely integrable impulse response, Fourier integral, and Laplace transform. The superiority of Laplace transform over the other methods becomes clear for several reasons that include the following: 1) It allows for the analysis of the stable, as well as, the unstable systems. 2) It not only determines absolute stability (a yes/no answer), but also shines light on the relative stability (how stable/unstable the system is), allowing for a design with a good degree of stability. 3) Its algebraic and convolution properties significantly simplify the mathematical manipulations involved in the analysis, especially when tackling a complex system composed of several simpler ones. A brief relevant introduction to the subject of systems is presented for the unfamiliar reader. Additionally, appropriate physical concepts and examples are presented for better clarity.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.