Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Online Trajectory Optimization Using Inexact Gradient Feedback for Time-Varying Environments (2001.00685v2)

Published 3 Jan 2020 in math.OC

Abstract: This paper considers the problem of online trajectory design under time-varying environments. We formulate the general trajectory optimization problem within the framework of time-varying constrained convex optimization and proposed a novel version of the online gradient ascent algorithm for such problems. Moreover, the gradient feedback is noisy and allows us to use the proposed algorithm for a range of practical applications where it is difficult to acquire the true gradient. In contrast to the most available literature, we present the offline sublinear regret of the proposed algorithm up to the path length variations of the optimal offline solution, the cumulative gradient, and the error in the gradient variations. Furthermore, we establish a lower bound on the offline dynamic regret, which defines the optimality of any trajectory. To show the efficacy of the proposed algorithm, we consider two practical problems of interest. First, we consider a device to device (D2D) communications setting, and the goal is to design a user trajectory while maximizing its connectivity to the internet. The second problem is associated with the online planning of energy-efficient trajectories for unmanned surface vehicles (USV) under strong disturbances in ocean environments with both static and dynamic goal locations. The detailed simulation results demonstrate the significance of the proposed algorithm on synthetic and real data sets. Video on the real-world datasets can be found at {https://www.youtube.com/watch?v=FcRqqWtpf\_0}

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube