Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using CNNs For Users Segmentation In Video See-Through Augmented Virtuality (2001.00487v1)

Published 2 Jan 2020 in cs.CV

Abstract: In this paper, we present preliminary results on the use of deep learning techniques to integrate the users self-body and other participants into a head-mounted video see-through augmented virtuality scenario. It has been previously shown that seeing users bodies in such simulations may improve the feeling of both self and social presence in the virtual environment, as well as user performance. We propose to use a convolutional neural network for real time semantic segmentation of users bodies in the stereoscopic RGB video streams acquired from the perspective of the user. We describe design issues as well as implementation details of the system and demonstrate the feasibility of using such neural networks for merging users bodies in an augmented virtuality simulation.

Citations (8)

Summary

We haven't generated a summary for this paper yet.