Papers
Topics
Authors
Recent
Search
2000 character limit reached

Stieltjes moment sequences for pattern-avoiding permutations

Published 2 Jan 2020 in math.CO and cs.SC | (2001.00393v3)

Abstract: A small set of combinatorial sequences have coefficients that can be represented as moments of a nonnegative measure on $[0, \infty)$. Such sequences are known as Stieltjes moment sequences. This article focuses on some classical sequences in enumerative combinatorics, denoted $Av(\mathcal{P})$, and counting permutations of ${1, 2, \ldots, n }$ that avoid some given pattern $\mathcal{P}$. For increasing patterns $\mathcal{P}=(12\ldots k)$, we recall that the corresponding sequences, $Av(123\ldots k)$, are Stieltjes moment sequences, and we explicitly find the underlying density function, either exactly or numerically, by using the Stieltjes inversion formula as a fundamental tool. We show that the generating functions of the sequences $\, Av(1234)$ and $\, Av(12345)$ correspond, up to simple rational functions, to an order-one linear differential operator acting on a classical modular form given as a pullback of a Gaussian $\, _2F_1$ hypergeometric function, respectively to an order-two linear differential operator acting on the square of a classical modular form given as a pullback of a $\, _2F_1$ hypergeometric function. We demonstrate that the density function for the Stieltjes moment sequence $Av(123\ldots k)$ is closely, but non-trivially, related to the density attached to the distance traveled by a walk in the plane with $k-1$ unit steps in random directions. Finally, we study the challenging case of the $Av(1324)$ sequence and give compelling numerical evidence that this too is a Stieltjes moment sequence. Accepting this, we show how rigorous lower bounds on the growth constant of this sequence can be constructed, which are stronger than existing bounds. A further unproven assumption leads to even better bounds, which can be extrapolated to give an estimate of the (unknown) growth constant.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.