Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-channel Speech Separation Using Spatially Selective Deep Non-linear Filters (2304.12023v2)

Published 24 Apr 2023 in eess.AS, cs.LG, and cs.SD

Abstract: In a multi-channel separation task with multiple speakers, we aim to recover all individual speech signals from the mixture. In contrast to single-channel approaches, which rely on the different spectro-temporal characteristics of the speech signals, multi-channel approaches should additionally utilize the different spatial locations of the sources for a more powerful separation especially when the number of sources increases. To enhance the spatial processing in a multi-channel source separation scenario, in this work, we propose a deep neural network (DNN) based spatially selective filter (SSF) that can be spatially steered to extract the speaker of interest by initializing a recurrent neural network layer with the target direction. We compare the proposed SSF with a common end-to-end direct separation (DS) approach trained using utterance-wise permutation invariant training (PIT), which only implicitly learns to perform spatial filtering. We show that the SSF has a clear advantage over a DS approach with the same underlying network architecture when there are more than two speakers in the mixture, which can be attributed to a better use of the spatial information. Furthermore, we find that the SSF generalizes much better to additional noise sources that were not seen during training and to scenarios with speakers positioned at a similar angle.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Kristina Tesch (6 papers)
  2. Timo Gerkmann (70 papers)
Citations (13)

Summary

We haven't generated a summary for this paper yet.