Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Unified Framework for Speech Separation (1912.07814v1)

Published 17 Dec 2019 in cs.LG, eess.AS, and stat.ML

Abstract: Speech separation refers to extracting each individual speech source in a given mixed signal. Recent advancements in speech separation and ongoing research in this area, have made these approaches as promising techniques for pre-processing of naturalistic audio streams. After incorporating deep learning techniques into speech separation, performance on these systems is improving faster. The initial solutions introduced for deep learning based speech separation analyzed the speech signals into time-frequency domain with STFT; and then encoded mixed signals were fed into a deep neural network based separator. Most recently, new methods are introduced to separate waveform of the mixed signal directly without analyzing them using STFT. Here, we introduce a unified framework to include both spectrogram and waveform separations into a single structure, while being only different in the kernel function used to encode and decode the data; where, both can achieve competitive performance. This new framework provides flexibility; in addition, depending on the characteristics of the data, or limitations of the memory and latency can set the hyper-parameters to flow in a pipeline of the framework which fits the task properly. We extend single-channel speech separation into multi-channel framework with end-to-end training of the network while optimizing the speech separation criterion (i.e., Si-SNR) directly. We emphasize on how tied kernel functions for calculating spatial features, encoder, and decoder in multi-channel framework can be effective. We simulate spatialized reverberate data for both WSJ0 and LibriSpeech corpora here, and while these two sets of data are different in the matter of size and duration, the effect of capturing shorter and longer dependencies of previous/+future samples are studied in detail. We report SDR, Si-SNR and PESQ to evaluate the performance of developed solutions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Fahimeh Bahmaninezhad (6 papers)
  2. Shi-Xiong Zhang (48 papers)
  3. Yong Xu (432 papers)
  4. Meng Yu (65 papers)
  5. John H. L. Hansen (58 papers)
  6. Dong Yu (329 papers)
Citations (4)