Introduction to Nonsmooth Analysis and Optimization
Abstract: This book aims to give an introduction to generalized derivative concepts useful in deriving necessary optimality conditions and numerical algorithms for infinite-dimensional nondifferentiable optimization problems that arise in inverse problems, imaging, and PDE-constrained optimization. They cover convex subdifferentials, Fenchel duality, monotone operators and resolvents, Moreau--Yosida regularization as well as Clarke and (briefly) limiting subdifferentials. Both first-order (proximal point and splitting) methods and second-order (semismooth Newton) methods are treated. In addition, differentiation of set-valued mapping is discussed and used for deriving second-order optimality conditions for as well as Lipschitz stability properties of minimizers. Applications to inverse problems and optimal control of partial differential equations illustrate the derived results and algorithms. The required background from functional analysis and calculus of variations is also briefly summarized.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.