Papers
Topics
Authors
Recent
2000 character limit reached

A Coarse-to-Fine Adaptive Network for Appearance-Based Gaze Estimation

Published 1 Jan 2020 in cs.CV | (2001.00187v1)

Abstract: Human gaze is essential for various appealing applications. Aiming at more accurate gaze estimation, a series of recent works propose to utilize face and eye images simultaneously. Nevertheless, face and eye images only serve as independent or parallel feature sources in those works, the intrinsic correlation between their features is overlooked. In this paper we make the following contributions: 1) We propose a coarse-to-fine strategy which estimates a basic gaze direction from face image and refines it with corresponding residual predicted from eye images. 2) Guided by the proposed strategy, we design a framework which introduces a bi-gram model to bridge gaze residual and basic gaze direction, and an attention component to adaptively acquire suitable fine-grained feature. 3) Integrating the above innovations, we construct a coarse-to-fine adaptive network named CA-Net and achieve state-of-the-art performances on MPIIGaze and EyeDiap.

Citations (141)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.