Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On renormalized solutions to elliptic inclusions with nonstandard growth (1912.12729v4)

Published 29 Dec 2019 in math.AP

Abstract: We study the elliptic inclusion given in the following divergence form \begin{align*} & -\mathrm{div}\, A(x,\nabla u) \ni f\quad \mathrm{in}\quad \Omega, & u=0\quad \mathrm{on}\quad \partial \Omega. \end{align*} As we assume that $f\in L1(\Omega)$, the solutions to the above problem are understood in the renormalized sense. We also assume nonstandard, possibly nonpolynomial, heterogeneous and anisotropic growth and coercivity conditions on the maximally monotone multifunction $A$ which necessitates the use of the nonseparable and nonreflexive Musielak--Orlicz spaces. We prove the existence and uniqueness of the renormalized solution as well as, under additional assumptions on the problem data, its relation to the weak solution. The key difficulty, the lack of a Carath\'{e}odory selection of the maximally monotone multifunction is overcome with the use of the Minty transform.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube