Papers
Topics
Authors
Recent
2000 character limit reached

Bayesian inference for nonlinear inverse problems

Published 29 Dec 2019 in math.ST and stat.TH | (1912.12694v2)

Abstract: Bayesian methods are actively used for parameter identification and uncertainty quantification when solving nonlinear inverse problems with random noise. However, there are only few theoretical results justifying the Bayesian approach. Recent papers, see e.g. \cite{Nickl2017,lu2017bernsteinvon} and references therein, illustrate the main difficulties and challenges in studying the properties of the posterior distribution in the nonparametric setup. This paper offers a new approach for study the frequentist properties of the nonparametric Bayes procedures. The idea of the approach is to relax the nonlinear structural equation by introducing an auxiliary functional parameter and replacing the structural equation with a penalty and by imposing a prior on the auxiliary parameter. For the such extended model, we state sharp bounds on posterior concentration and on the accuracy of the penalized MLE and on Gaussian approximation of the posterior, and a number of further results. All the bounds are given in terms of effective dimension, and we show that the proposed calming device does not significantly affect this value.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.