Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 131 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Effective results on uniformization and intrinsic GCM spheres in perturbations of Kerr (1912.12195v1)

Published 27 Dec 2019 in math.AP, gr-qc, math-ph, math.DG, math.MP, and physics.class-ph

Abstract: This is a follow-up of our paper \cite{KS-Kerr1} on the construction of general covariant modulated (GCM) spheres in perturbations of Kerr, which we expect to play a central role in establishing their nonlinear stability. We reformulate the main results of that paper using a canonical definition of $\ell=1$ modes on a $2$-sphere embedded in a $1+3$ vacuum manifold. This is based on a new, effective, version of the classical uniformization theorem which allows us to define such modes and prove their stability for spheres with comparable metrics. The reformulation allows us to prove a second, intrinsic, existence theorem for GCM spheres, expressed purely in terms of geometric quantities defined on it. A natural definition of angular momentum for such GCM spheres is also introduced, which we expect to play a key role in determining the final angular momentum for general perturbations of Kerr.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.