Papers
Topics
Authors
Recent
2000 character limit reached

Large-scale Multi-modal Person Identification in Real Unconstrained Environments (1912.12134v1)

Published 17 Dec 2019 in cs.CV and eess.SP

Abstract: Person identification (P-ID) under real unconstrained noisy environments is a huge challenge. In multiple-feature learning with Deep Convolutional Neural Networks (DCNNs) or Machine Learning method for large-scale person identification in the wild, the key is to design an appropriate strategy for decision layer fusion or feature layer fusion which can enhance discriminative power. It is necessary to extract different types of valid features and establish a reasonable framework to fuse different types of information. In traditional methods, different persons are identified based on single modal features to identify, such as face feature, audio feature, and head feature. These traditional methods cannot realize a highly accurate level of person identification in real unconstrained environments. The study aims to propose a fusion module to fuse multi-modal features for person identification in real unconstrained environments.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.