Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Confounder Selection via Support Intersection (1912.11652v1)

Published 25 Dec 2019 in math.ST, cs.LG, stat.AP, and stat.TH

Abstract: Confounding matters in almost all observational studies that focus on causality. In order to eliminate bias caused by connfounders, oftentimes a substantial number of features need to be collected in the analysis. In this case, large p small n problem can arise and dimensional reduction technique is required. However, the traditional variable selection methods which focus on prediction are problematic in this setting. Throughout this paper, we analyze this issue in detail and assume the sparsity of confounders which is different from the previous works. Under this assumption we propose several variable selection methods based on support intersection to pick out the confounders. Also we discussed the different approaches for estimation of causal effect and unconfoundedness test. To aid in our description, finally we provide numerical simulations to support our claims and compare to common heuristic methods, as well as applications on real dataset.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.