Theory of the special displacement method for electronic structure calculations at finite temperature (1912.10929v1)
Abstract: Calculations of electronic and optical properties of solids at finite temperature including electron-phonon interactions and quantum zero-point renormalization have enjoyed considerable progress during the past few years. Among the emerging methodologies in this area, we recently proposed a new approach to compute optical spectra at finite temperature including phonon-assisted quantum processes via a single supercell calculation [Zacharias and Giustino, Phys. Rev. B 94, 075125 (2016)]. In the present work we considerably expand the scope of our previous theory starting from a compact reciprocal space formulation, and we demonstrate that this improved approach provides accurate temperature-dependent band structures in three-dimensional and two-dimensional materials, using a special set of atomic displacements in a single supercell calculation. We also demonstrate that our special displacement reproduces the thermal ellipsoids obtained from X-ray crystallography, and yields accurate thermal averages of the mean-square atomic displacements. At a more fundamental level, we show that the special displacement represents an exact single-point approximant of an imaginary-time Feynman's path integral for the lattice dynamics. This enhanced version of the special displacement method enables non-perturbative, robust, and straightforward ab initio calculations of the electronic and optical properties of solids at finite temperature, and can easily be used as a post-processing step to any electronic structure code. Given its simplicity and numerical stability, the present development is suited for high-throughput calculations of band structures, quasiparticle corrections, optical spectra, and transport coefficients at finite temperature.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.