Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 135 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Layerwise Noise Maximisation to Train Low-Energy Deep Neural Networks (1912.10764v1)

Published 23 Dec 2019 in cs.LG and stat.ML

Abstract: Deep neural networks (DNNs) depend on the storage of a large number of parameters, which consumes an important portion of the energy used during inference. This paper considers the case where the energy usage of memory elements can be reduced at the cost of reduced reliability. A training algorithm is proposed to optimize the reliability of the storage separately for each layer of the network, while incurring a negligible complexity overhead compared to a conventional stochastic gradient descent training. For an exponential energy-reliability model, the proposed training approach can decrease the memory energy consumption of a DNN with binary parameters by 3.3$\times$ at isoaccuracy, compared to a reliable implementation.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.