Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Persistent Homology of Graph Embeddings (1912.10238v2)

Published 21 Dec 2019 in math.ST, math.AT, and stat.TH

Abstract: Popular network models such as the mixed membership and standard stochastic block model are known to exhibit distinct geometric structure when embedded into $\mathbb{R}{d}$ using spectral methods. The resulting point cloud concentrates around a simplex in the first model, whereas it separates into clusters in the second. By adopting the formalism of generalised random dot-product graphs, we demonstrate that both of these models, and different mixing regimes in the case of mixed membership, may be distinguished by the persistent homology of the underlying point distribution in the case of adjacency spectral embedding. Moreover, despite non-identifiability issues, we show that the persistent homology of the support of the distribution and its super-level sets can be consistently estimated. As an application of our consistency results, we provide a topological hypothesis test for distinguishing the standard and mixed membership stochastic block models.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.