Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 119 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 423 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Convolutional Neural Networks: A Binocular Vision Perspective (1912.10201v1)

Published 21 Dec 2019 in cs.CV and eess.IV

Abstract: It is arguable that whether the single camera captured (monocular) image datasets are sufficient enough to train and test convolutional neural networks (CNNs) for imitating the biological neural network structures of the human brain. As human visual system works in binocular, the collaboration of the eyes with the two brain lobes needs more investigation for improvements in such CNN-based visual imagery analysis applications. It is indeed questionable that if respective visual fields of each eye and the associated brain lobes are responsible for different learning abilities of the same scene. There are such open questions in this field of research which need rigorous investigation in order to further understand the nature of the human visual system, hence improve the currently available deep learning applications. This position paper analyses a binocular CNNs architecture that is more analogous to the biological structure of the human visual system than the conventional deep learning techniques. While taking a structure called optic chiasma into account, this architecture consists of basically two parallel CNN structures associated with each visual field and the brain lobe, fully connected later possibly as in the primary visual cortex (V1). Experimental results demonstrate that binocular learning of two different visual fields leads to better classification rates on average, when compared to classical CNN architectures.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.