Papers
Topics
Authors
Recent
2000 character limit reached

Online Gradient Descent for Linear Dynamical Systems (1912.09311v2)

Published 19 Dec 2019 in math.OC

Abstract: In this paper, online convex optimization is applied to the problem of controlling linear dynamical systems. An algorithm similar to online gradient descent, which can handle time-varying and unknown cost functions, is proposed. Then, performance guarantees are derived in terms of regret analysis. We show that the proposed control scheme achieves sublinear regret if the variation of the cost functions is sublinear. In addition, as a special case, the system converges to the optimal equilibrium if the cost functions are invariant after some finite time. Finally, the performance of the resulting closed loop is illustrated by numerical simulations.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.