Approximation by juntas in the symmetric group, and forbidden intersection problems (1912.09228v1)
Abstract: A family of permutations $\mathcal{F} \subset S_{n}$ is said to be $t$-intersecting if any two permutations in $\mathcal{F}$ agree on at least $t$ points. It is said to be $(t-1)$-intersection-free if no two permutations in $\mathcal{F}$ agree on exactly $t-1$ points. If $S,T \subset {1,2,\ldots,n}$ with $|S|=|T|$, and $\pi: S \to T$ is a bijection, the $\pi$-star in $S_n$ is the family of all permutations in $S_n$ that agree with $\pi$ on all of $S$. An $s$-star is a $\pi$-star such that $\pi$ is a bijection between sets of size $s$. Friedgut and Pilpel, and independently the first author, showed that if $\mathcal{F} \subset S_n$ is $t$-intersecting, and $n$ is sufficiently large depending on $t$, then $|\mathcal{F}| \leq (n-t)!$; this proved a conjecture of Deza and Frankl from 1977. Equality holds only if $\mathcal{F}$ is a $t$-star. In this paper, we give a more robust' proof of a strengthening of the Deza-Frankl conjecture, namely that if $n$ is sufficiently large depending on $t$, and $\mathcal{F} \subset S_n$ is $(t-1)$-intersection-free, then $|\mathcal{F} \leq (n-t)!$, with equality only if $\mathcal{F}$ is a $t$-star. The main ingredient of our proof is a
junta approximation' result, namely, that any $(t-1)$-intersection-free family of permutations is essentially contained in a $t$-intersecting {\em junta} (a junta' being a union of a bounded number of $O(1)$-stars). The proof of our junta approximation result relies, in turn, on a weak regularity lemma for families of permutations, a combinatorial argument that
bootstraps' a weak notion of pseudorandomness into a stronger one, and finally a spectral argument for pairs of highly-pseudorandom fractional families. Our proof employs four different notions of pseudorandomness, three being combinatorial in nature, and one being algebraic.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.