Coanalytic Ultrafilter Bases
Abstract: We study the definability of ultrafilter bases on $\omega$ in the sense of descriptive set theory. As a main result we show that there is no coanalytic base for a Ramsey ultrafilter, while in $L$ we can construct $\Pi1_1$ P-point and Q-point bases. We also show that the existence of a $\mathbf\Delta1_{n+1}$ ultrafilter is equivalent to that of a $\mathbf\Pi1_n$ ultrafilter base, for $n \in \omega$. Moreover we introduce a Borel version of the classical ultrafilter number and make some observations.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.