Paracontrolled calculus for quasilinear singular PDEs (1912.09073v1)
Abstract: We develop further in this work the high order paracontrolled calculus setting to deal with the analytic part of the study of quasilinear singular PDEs. A number of continuity results for some operators are proved for that purpose. Unlike the regularity structures approach of the subject by Gerencser and Hairer, and Otto, Sauer, Smith and Weber, or Furlan and Gubinelli' study of the two dimensional quasilinear parabolic Anderson model equation, we do not use parametrised families of models or paraproducts to set the scene. We use instead infinite dimensional paracontrolled structures that we introduce here.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.