Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Hyperbolic wavelet analysis of classical isotropic and anisotropic Besov-Sobolev spaces (1912.08034v1)

Published 17 Dec 2019 in math.FA

Abstract: In this paper we introduce new function spaces which we call anisotropic hyperbolic Besov and Triebel-Lizorkin spaces. Their definition is based on a hyperbolic Littlewood-Paley analysis involving an anisotropy vector only occurring in the smoothness weights. Such spaces provide a general and natural setting in order to understand what kind of anisotropic smoothness can be described using hyperbolic wavelets (in the literature also sometimes called tensor-product wavelets), a wavelet class which hitherto has been mainly used to characterize spaces of dominating mixed smoothness. A centerpiece of our present work are characterizations of these new spaces based on the hyperbolic wavelet transform. Hereby we treat both, the standard approach using wavelet systems equipped with sufficient smoothness, decay, and vanishing moments, but also the very simple and basic hyperbolic Haar system. The second major question we pursue is the relationship between the novel hyperbolic spaces and the classical anisotropic Besov-Lizorkin-Triebel scales. As our results show, in general, both approaches to resolve an anisotropy do not coincide. However, in the Sobolev range this is the case, providing a link to apply the newly obtained hyperbolic wavelet characterizations to the classical setting. In particular, this allows for detecting classical anisotropies via the coefficients of a universal hyperbolic wavelet basis, without the need of adaption of the basis or a-priori knowledge on the anisotropy.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.