Extension of Donsker's Invariance Principle with Incomplete Partial-Sum Process (1912.07215v1)
Abstract: Based on deleting-item central limit theory, the classical Donsker's theorem of partial-sum process of independent and identically distributed (i.i.d.) random variables is extended to incomplete partial-sum process. The incomplete partial-sum process Donsker's invariance principles are constructed and derived for general partial-sum process of i.i.d random variables and empirical process respectively, they are not only the extension of functional central limit theory, but also the extension of deleting-item central limit theory. Our work enriches the random elements structure of weak convergence.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.