Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Testing of fractional Brownian motion in a noisy environment (1912.07012v2)

Published 15 Dec 2019 in math.ST, stat.ME, and stat.TH

Abstract: Fractional Brownian motion (FBM) is the only Gaussian self-similar process with stationary increments. Its increment process, called fractional Gaussian noise, is ergodic and exhibits a property of power-like decaying autocorrelation function (ACF) which leads to the notion of long memory. These properties have made FBM important in modelling real-world data recorded in different experiments ranging from biology to telecommunication. These experiments are often disturbed by a noise which source can be just the instrument error. In this paper we propose a rigorous statistical test based on the ACF for FBM with added white Gaussian noise. To this end we derive a distribution of the test statistic which is given explicitly by the generalized chi-squared distribution. This allows us to find critical regions for the test with a given significance level. We check the quality of the introduced test by studying its power and comparing with other tests existing in the literature. We also note that the introduced test procedure can be applied to an arbitrary Gaussian process.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.