Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Finite state Mean Field Games with Wright-Fisher common noise (1912.06701v2)

Published 13 Dec 2019 in math.PR, math.AP, and math.OC

Abstract: We force uniqueness in finite state mean field games by adding a Wright-Fisher common noise. We achieve this by analyzing the master equation of this game, which is a degenerate parabolic second-order partial differential equation set on the simplex whose characteristics solve the stochastic forward-backward system associated with the mean field game; see Cardaliaguet et al. (2019). We show that this equation, which is a non-linear version of the Kimura type equation studied in Epstein and Mazzeo (2013), has a unique smooth solution whenever the normal component of the drift at the boundary is strong enough. Among others, this requires a priori estimates of H\"older type for the corresponding Kimura operator when the drift therein is merely continuous.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.