Energy and momentum conservation in the Euler-Poincaré formulation of local Vlasov-Maxwell-type systems
Abstract: The action principle by Low [Proc. R. Soc. Lond. A 248, 282--287] for the classic Vlasov-Maxwell system contains a mix of Eulerian and Lagrangian variables. This renders the Noether analysis of reparametrization symmetries inconvenient, especially since the well-known energy- and momentum-conservation laws for the system are expressed in terms of Eulerian variables only. While an Euler-Poincar\'e formulation of Vlasov-Maxwell-type systems, effectively starting with Low's action and using constrained variations for the Eulerian description of particle motion, has been known for a while [J. Math. Phys., 39, 6, pp. 3138-3157], it is hard to come by a documented derivation of the related energy- and momentum-conservation laws in the spirit of the Euler-Poincar\'e machinery. To our knowledge only one such derivation exists in the literature so far, dealing with the so-called guiding-center Vlasov-Darwin system [Phys. Plasmas 25, 102506]. The present exposition discusses a generic class of local Vlasov-Maxwell-type systems, with a conscious choice of adopting the language of differential geometry to exploit the Euler-Poincar\'e framework to its full extent. After reviewing the transition from a Lagrangian picture to an Eulerian one, we demonstrate how symmetries generated by isometries in space lead to conservation laws for linear- and angular-momentum density and how symmetry by time translation produces a conservation law for energy density. We also discuss what happens if no symmetries exist. Finally, two explicit examples will be given -- the classic Vlasov-Maxwell and the drift-kinetic Vlasov-Maxwell -- and the results expressed in the language of regular vector calculus for familiarity.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.