Papers
Topics
Authors
Recent
2000 character limit reached

Leveraging End-to-End Speech Recognition with Neural Architecture Search (1912.05946v2)

Published 11 Dec 2019 in eess.AS, cs.IR, cs.LG, and cs.SD

Abstract: Deep neural networks (DNNs) have been demonstrated to outperform many traditional machine learning algorithms in Automatic Speech Recognition (ASR). In this paper, we show that a large improvement in the accuracy of deep speech models can be achieved with effective Neural Architecture Optimization at a very low computational cost. Phone recognition tests with the popular LibriSpeech and TIMIT benchmarks proved this fact by displaying the ability to discover and train novel candidate models within a few hours (less than a day) many times faster than the attention-based seq2seq models. Our method achieves test error of 7% Word Error Rate (WER) on the LibriSpeech corpus and 13% Phone Error Rate (PER) on the TIMIT corpus, on par with state-of-the-art results.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.