Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Sparse Interpolation With Errors in Chebyshev Basis Beyond Redundant-Block Decoding (1912.05719v5)

Published 12 Dec 2019 in cs.SC

Abstract: We present sparse interpolation algorithms for recovering a polynomial with $\le B$ terms from $N$ evaluations at distinct values for the variable when $\le E$ of the evaluations can be erroneous. Our algorithms perform exact arithmetic in the field of scalars $\mathsf{K}$ and the terms can be standard powers of the variable or Chebyshev polynomials, in which case the characteristic of $\mathsf{K}$ is $\ne 2$. Our algorithms return a list of valid sparse interpolants for the $N$ support points and run in polynomial-time. For standard power basis our algorithms sample at $N = \lfloor \frac{4}{3} E + 2 \rfloor B$ points, which are fewer points than $N = 2(E+1)B - 1$ given by Kaltofen and Pernet in 2014. For Chebyshev basis our algorithms sample at $N = \lfloor \frac{3}{2} E + 2 \rfloor B$ points, which are also fewer than the number of points required by the algorithm given by Arnold and Kaltofen in 2015, which has $N = 74 \lfloor \frac{E}{13} + 1 \rfloor$ for $B = 3$ and $E \ge 222$. Our method shows how to correct $2$ errors in a block of $4B$ points for standard basis and how to correct $1$ error in a block of $3B$ points for Chebyshev Basis.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.