Papers
Topics
Authors
Recent
2000 character limit reached

Discriminative Dimension Reduction based on Mutual Information (1912.05631v1)

Published 11 Dec 2019 in cs.CV

Abstract: The "curse of dimensionality" is a well-known problem in pattern recognition. A widely used approach to tackling the problem is a group of subspace methods, where the original features are projected onto a new space. The lower dimensional subspace is then used to approximate the original features for classification. However, most subspace methods were not originally developed for classification. We believe that direct adoption of these subspace methods for pattern classification should not be considered best practice. In this paper, we present a new information theory based algorithm for selecting subspaces, which can always result in superior performance over conventional methods. This paper makes the following main contributions: i) it improves a common practice widely used by practitioners in the field of pattern recognition, ii) it develops an information theory based technique for systematically selecting the subspaces that are discriminative and therefore are suitable for pattern recognition/classification purposes, iii) it presents extensive experimental results on a variety of computer vision and pattern recognition tasks to illustrate that the subspaces selected based on maximum mutual information criterion will always enhance performance regardless of the classification techniques used.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.