2000 character limit reached
On negative eigenvalues of two-dimensional Schroedinger operators with singular potentials (1912.05447v2)
Published 10 Dec 2019 in math.SP
Abstract: We present upper estimates for the number of negative eigenvalues of two-dimensional Schroedinger operators with potentials generated by Ahlfors regular measures of arbitrary dimension $\alpha\in (0, 2]$.The estimates are given in terms of the integrals of the potential with a logarithmic weight and of its L $\log$ L type Orlicz norms. In the case $\alpha = 1$, our estimates are stronger than the known ones about Schroedinger operators with potentials supported by Lipschitz curves.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.