Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

SCR-Graph: Spatial-Causal Relationships based Graph Reasoning Network for Human Action Prediction (1912.05003v1)

Published 22 Nov 2019 in cs.CV and eess.IV

Abstract: Technologies to predict human actions are extremely important for applications such as human robot cooperation and autonomous driving. However, a majority of the existing algorithms focus on exploiting visual features of the videos and do not consider the mining of relationships, which include spatial relationships between human and scene elements as well as causal relationships in temporal action sequences. In fact, human beings are good at using spatial and causal relational reasoning mechanism to predict the actions of others. Inspired by this idea, we proposed a Spatial and Causal Relationship based Graph Reasoning Network (SCR-Graph), which can be used to predict human actions by modeling the action-scene relationship, and causal relationship between actions, in spatial and temporal dimensions respectively. Here, in spatial dimension, a hierarchical graph attention module is designed by iteratively aggregating the features of different kinds of scene elements in different level. In temporal dimension, we designed a knowledge graph based causal reasoning module and map the past actions to temporal causal features through Diffusion RNN. Finally, we integrated the causality features into the heterogeneous graph in the form of shadow node, and introduced a self-attention module to determine the time when the knowledge graph information should be activated. Extensive experimental results on the VIRAT datasets demonstrate the favorable performance of the proposed framework.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.