Papers
Topics
Authors
Recent
2000 character limit reached

Explaining Sequence-Level Knowledge Distillation as Data-Augmentation for Neural Machine Translation (1912.03334v1)

Published 6 Dec 2019 in cs.CL

Abstract: Sequence-level knowledge distillation (SLKD) is a model compression technique that leverages large, accurate teacher models to train smaller, under-parameterized student models. Why does pre-processing MT data with SLKD help us train smaller models? We test the common hypothesis that SLKD addresses a capacity deficiency in students by "simplifying" noisy data points and find it unlikely in our case. Models trained on concatenations of original and "simplified" datasets generalize just as well as baseline SLKD. We then propose an alternative hypothesis under the lens of data augmentation and regularization. We try various augmentation strategies and observe that dropout regularization can become unnecessary. Our methods achieve BLEU gains of 0.7-1.2 on TED Talks.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.