Explaining Sequence-Level Knowledge Distillation as Data-Augmentation for Neural Machine Translation (1912.03334v1)
Abstract: Sequence-level knowledge distillation (SLKD) is a model compression technique that leverages large, accurate teacher models to train smaller, under-parameterized student models. Why does pre-processing MT data with SLKD help us train smaller models? We test the common hypothesis that SLKD addresses a capacity deficiency in students by "simplifying" noisy data points and find it unlikely in our case. Models trained on concatenations of original and "simplified" datasets generalize just as well as baseline SLKD. We then propose an alternative hypothesis under the lens of data augmentation and regularization. We try various augmentation strategies and observe that dropout regularization can become unnecessary. Our methods achieve BLEU gains of 0.7-1.2 on TED Talks.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.