Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Why are Adaptive Methods Good for Attention Models? (1912.03194v2)

Published 6 Dec 2019 in math.OC and cs.LG

Abstract: While stochastic gradient descent (SGD) is still the \emph{de facto} algorithm in deep learning, adaptive methods like Clipped SGD/Adam have been observed to outperform SGD across important tasks, such as attention models. The settings under which SGD performs poorly in comparison to adaptive methods are not well understood yet. In this paper, we provide empirical and theoretical evidence that a heavy-tailed distribution of the noise in stochastic gradients is one cause of SGD's poor performance. We provide the first tight upper and lower convergence bounds for adaptive gradient methods under heavy-tailed noise. Further, we demonstrate how gradient clipping plays a key role in addressing heavy-tailed gradient noise. Subsequently, we show how clipping can be applied in practice by developing an \emph{adaptive} coordinate-wise clipping algorithm (ACClip) and demonstrate its superior performance on BERT pretraining and finetuning tasks.

Citations (79)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.