Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Contracting Arbitrary Tensor Networks: General Approximate Algorithm and Applications in Graphical Models and Quantum Circuit Simulations (1912.03014v2)

Published 6 Dec 2019 in physics.comp-ph, cond-mat.stat-mech, cond-mat.str-el, and quant-ph

Abstract: We present a general method for approximately contracting tensor networks with an arbitrary connectivity. This enables us to release the computational power of tensor networks to wide use in inference and learning problems defined on general graphs. We show applications of our algorithm in graphical models, specifically on estimating free energy of spin glasses defined on various of graphs, where our method largely outperforms existing algorithms including the mean-field methods and the recently proposed neural-network-based methods. We further apply our method to the simulation of random quantum circuits, and demonstrate that, with a trade off of negligible truncation errors, our method is able to simulate large quantum circuits that are out of reach of the state-of-the-art simulation methods.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube