Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Adjusting Decision Boundary for Class Imbalanced Learning (1912.01857v2)

Published 4 Dec 2019 in cs.CV

Abstract: Training of deep neural networks heavily depends on the data distribution. In particular, the networks easily suffer from class imbalance. The trained networks would recognize the frequent classes better than the infrequent classes. To resolve this problem, existing approaches typically propose novel loss functions to obtain better feature embedding. In this paper, we argue that drawing a better decision boundary is as important as learning better features. Inspired by observations, we investigate how the class imbalance affects the decision boundary and deteriorates the performance. We also investigate the feature distributional discrepancy between training and test time. As a result, we propose a novel, yet simple method for class imbalanced learning. Despite its simplicity, our method shows outstanding performance. In particular, the experimental results show that we can significantly improve the network by scaling the weight vectors, even without additional training process.

Citations (69)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.