Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Arborescences of Covering Graphs (1912.01060v2)

Published 2 Dec 2019 in math.CO

Abstract: An arborescence of a directed graph $\Gamma$ is a spanning tree directed toward a particular vertex $v$. The arborescences of a graph rooted at a particular vertex may be encoded as a polynomial $A_v(\Gamma)$ representing the sum of the weights of all such arborescences. The arborescences of a graph and the arborescences of a covering graph $\tilde{\Gamma}$ are closely related. Using voltage graphs as means to construct arbitrary regular covers, we derive a novel explicit formula for the ratio of $A_v(\Gamma)$ to the sum of arborescences in the lift $A_{\tilde{v}}(\tilde{\Gamma})$ in terms of the determinant of Chaiken's voltage Laplacian matrix, a generalization of the Laplacian matrix. Chaiken's results on the relationship between the voltage Laplacian and vector fields on $\Gamma$ are reviewed, and we provide a new proof of Chaiken's results via a deletion-contraction argument.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.