Papers
Topics
Authors
Recent
2000 character limit reached

Handle Operators in String Theory (1912.01055v2)

Published 2 Dec 2019 in hep-th, math-ph, and math.MP

Abstract: We derive how to incorporate topological features of Riemann surfaces in string amplitudes by insertions of bi-local operators called handle operators. The resulting formalism is exact and globally well-defined in moduli space. After a detailed and pedagogical discussion of Riemann surfaces, complex structure deformations, global vs local aspects, boundary terms, an explicit choice of gluing-compatible and global (modulo U(1)) coordinates (termed `holomorphic normal coordinates'), finite changes in normal ordering, and factorisation of the path integral measure, we construct these handle operators explicitly. Adopting an offshell local coherent vertex operator basis for the latter, and gauge fixing invariance under Weyl transformations using holomorphic normal coordinates (developed by Polchinski), is particularly efficient. All loop amplitudes are gauge-invariant (BRST-exact terms decouple up to boundary terms in moduli space), and reparametrisation invariance is manifest, for arbitrary worldsheet curvature and topology (subject to the Euler number constraint). We provide a number of complementary viewpoints and consistency checks (including one-loop modular invariance, we compute all one- and two-point sphere amplitudes, glue two three-point sphere amplitudes to reproduce the exact four-point sphere amplitude, etc.).

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.