Papers
Topics
Authors
Recent
Search
2000 character limit reached

Proximal Splitting Algorithms for Convex Optimization: A Tour of Recent Advances, with New Twists

Published 30 Nov 2019 in math.OC | (1912.00137v8)

Abstract: Convex nonsmooth optimization problems, whose solutions live in very high dimensional spaces, have become ubiquitous. To solve them, the class of first-order algorithms known as proximal splitting algorithms is particularly adequate: they consist of simple operations, handling the terms in the objective function separately. In this overview, we demystify a selection of recent proximal splitting algorithms: we present them within a unified framework, which consists in applying splitting methods for monotone inclusions in primal-dual product spaces, with well-chosen metrics. Along the way, we easily derive new variants of the algorithms and revisit existing convergence results, extending the parameter ranges in several cases. In particular, we emphasize that when the smooth term in the objective function is quadratic, e.g., for least-squares problems, convergence is guaranteed with larger values of the relaxation parameter than previously known. Such larger values are usually beneficial for the convergence speed in practice.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.